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rigid airplane may be affected by fuel motion in the tarks. Such problems
pight also arise in ccanection with =issiles.

In this report the response of the fuel to simple harmonic motions
of a rectangular tank in translation, pitching and yaving is studied. The
shape of the free surface and the values of forces ard moments are obtained.
Using the farce and mament expressions, simple mechanical systems equivalent
to the fuel are constructed. These systems respond to motions of the tank
walls in the same fashion as the fuel, producing idectical forces and moments.
With the aid of this mechanical analogy the complete dynamic system can be
haniled by any desired process. ~<<

™e laplace transforms of the forces and moments are also obtained
for use vhen the entirev dynamics problem is to be solved by the transform
me thod.

A1l of the above develcrments assume a non-viscous incoapressible
Nuid sudject te linearixed boundary conditicns. All tank motions (except
that normal to the mwun free surface) are restricted to small acceleraticas.
Jn addition, the sngular motfcas of the tank are restricted to small dis-
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INTRODUCTION

Reason for Investigation

There has been increasing interest recently in aireraft dynamics
problems which are affected by the motion of fuel in partially full tanks’>.
The stability and response of a rigid airplane is a problem of this type.

It is intuitively apparent that a large mass of fuel with a free surface
may have serious dynamic effects on the airplane, particularly if there is

a possibility of rescnance.

Available Information

The understanding of these problems requires first an understanding
of the dynamics of fuel motion. A great deal of the necessary information

has been available for some timaaa, particularly the nature of the free

oscillations of 1liquid in some tanks of simple shape. Extension of this
material to include forced oscillations makes it possible to determine the
forces communicated to the tank walls by an arbitrary motion of the tank

(or airplane). Prior workhr in this direction initiated by Stewart and

Lorell was in part responsible for the present investigation. Similar
problems have been investigated in the field of seismology. Ref. 5 gives
experimental results and additional references to theoretical and experimental

work in this fileld.

Msthods Used
. For convenience in solving the complete dynamics problem it may be
desirable to replace the fuel by a simple mechanical system. Therefore,

in addition to presenting the Laplace transforms of forces and moments,




this report suggests mgchanical systems which produce the same forces and
moments as the oscillating fuel when the container is given an arbitrary
motion. (The "arbitrary" motion must, of course, fall within the scope of

the linearization preceszes used.) In a previous report6 the representation
of fuel by an equivalent pendulum was discussed. The characteristics of the
equivalent pendulum were determined only from consideration of fluid motions
in a stationary tank. This was adequate to define the frequency and the
product of mass times amplitude of motion for the pendulum, 8o that forces
corresponding to & given amplitude of the fundamental wave motion were dupli-
cated. This provided sufficient information for the study of some stability
problems as affected by fuel "sloshing." The present report offers additional
information so that the more general problem of aireraft response to arbitrary

disturbances can be considered, including the effect of angular tank motions.
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PROCEDURE

Assumptions

In order to simplify the problem & number of restrictions are applied
concerning the nature of the fluld, the motions of the fluid and the shape
of the tank. The fluld is assumed incompressible (ﬁhich requires no dis-
cussion), and non-viscous. Since baffles are not considered and the tanks
are relatively large, viscosity has little effect on the fluid motions.

All tank motions, (except those normal to the mean free surface), are
" restricted to small sccelerations. In addition, the angular motions of the
tank are restricted to esmall displacements. The free surface displacement
and slope must be smell. These conditions insure that the equations can
be linearized. This is consistent with the emall perturbation methods used
in airplane dynamics and does not necessarily limit the wvalue of the results.
(In this connection it should be noted that the above restrictions are suf-
ficient for linearization, but not all necessary. The necessary and suffi-
cient condition is probably that free surfece slopes and displacements be

small when measured relative to axes fixed in the tank. )

Only rectangular tanks are considered here in detail. The cylin-
drical tenk of circular cross-section with free surface normal to the axis

has been treated in Ref. L.

Free Osclllations

To determine the nature of the free oscillations in a stationary
tank the procedure is as follows. Since the fluid 1s assumed non-viscous

and incampressible, the velocity potential is chosen to satisfy the Laplace
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equation, At the walls the normal velocity components must be zero. On
the free surface the pressure must be zero, and in order to satiefy this
condition with linear functions it is necessary to assume small displace-
ments of the free surface. For rectangular tanks this problem is readily

solved.

Forced Oscillations

In studying the forced oscillations of the fluid to determine an
equivalent mechanical system it is sufficient to study the regponse of the
fluid to simple harmonic motions of all frequencies. If the system re-

- sponds correctly for each frequency it will respond correctly to any combi-
nation of these frequencies, since the problem has been linearized. An
arbitrary forcing function can be constructed by superposition, so the
mechanical system is equivalent to the fluid for any arbitrary disturbance.

The forced 6acilla.t1'on requires new boundary conditions corresponding
to the motion of the tank walls. Comparatively simple velocity potentials
can be constructed to satisfy these conditions. However, these potentials
create a pressure variation at the free surface vhich cannot actually exist.
It i1s then necessary to superimpose additional potentials having the time
frequency of the forcing function and the space character of the free oscil-
lations to cancel out this unwanted pressure variation. The resulting
potential satisfies the boundary conditions for the moving tank and camplies

vith the gero pressure condition on the free surface.

Tank Motions

Any tank motion of the type considered here can be constructed from

motions of translation along the three axes in space and a unique set of
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rotations about the three axes. (One axis is taken as perpendicular to the
mean free surface.) Motions normel to the free surface will be discussed
later. This leaves three basic types of motion to be considered at present;
translation parallel to the free surface, rotation about an axis parallel

to the free surface and rotation about an axis perpendicular to the free
surface. For convenience these motions are referred to as horizontal,
pitehing and yawiné. The horizontal motion is camparatively easy to analyze,
but the pitching and yawing cases are considerably more complex. The yawing
case requires the use of a 3-dimensional solution of Laplace's equation and
introduces a new set of natural frequencies. The pitching and horizontal
motion cases require only two-dimensional solutions and possess a common set

of natural frequencies.

Alternative Methods

The original method used for solving the forced oseillation problem
made it possible to set up equivalent mechanical systems, and gave expressions
for forces and moments only as functions of the forcing frequency. If it is
not desired to use the mechanical analogy, an alternative process is to set
up the entire boundary value problem in terms of the Laplace transform of
the velocity potential (instead of using the velocity potential itself).

This leads to expressions for the Laplace transforms of the forces and mo-
ments, which are included in this report. If Laplace transform methods are
used for solving the camplete dynamics problem, thep these force and moment

transforms enter directly as terms in the equations.




DEVELOPMENT OF EQUATIONS

Boundary Conditions

In the original development of the equations for the moving tank it
was assumed that the boundary condition at any wall would be satisfied only
at the mean position of the wall. In the case of horizontal tank motions
such an assumption implies severe restrictions on the motions. Since these
restrictions are both undesirable and unnecessary, they have been eliminated

(for horizontal motion) in the following development.

Consider a rectangular tank filled to a depth h with fuel. Let the

walls and bottom of the tank be given, in irrotational coordinates (x,y,z)

which follow the horizontel motion of the tank, by x = 1 g, y = :: ]EJ and

2.
coordinates (x,y,z) by

Z = - B If the horizontal motion of the tank center is given in inertial

X =X
/3 2 Y(f) (1)

then the moving coordinates are related to the inertial coordinates by

X =X -X@)
Sl

Thus a function f(X,y,z,t) in the inertial coordinates would trensform in

the moving coordinates to

F(Z,4,5,8) =f X WY@),2,%) = F5y,2,¢)  (3)




The velocity potential ﬁ (E,}',E,t) which describes motion of the fuel in
response to tank motion must satisfy the conditions that at any fluid boundary
the normal velocity of the fluid, ~ @ » be equal to the velocity of the
boundary normal to itself. If the velocity potential is expressed in the

form

$E@9,25t) = XOX-YOy + P (%,4,5,0) 1)

then @b/ must satisfy the conditions that at any fluid boundary the normal
velocity of the fluid relative to the moving coordinates, - $ , be equal
to the normal velocity of the boundary relative to the moving coordinates.
In the case of pure horizontal motion, ¢- = O on the tank walls and bottam.
If motions in pitch and yaw involve only small angular displacements of the
tank from its original orientation, then t.hé boundary conditions can be

applied with sufficient accuracy at x = ¥ -;—, y=1% g— and z = - 2.

If all tank motions are restricted so that they involve accelerations
vhich are small compared to the acceleration due to gravity, and, in the

case of sinusoidal motion, the forcing frequency is not too near the
.y -y
frequency of a mode of free oscillation of the fuel, then @ , ¢,§_

-4 -
@5 will be small. Also the slope of the free surface, 7z , will be

, end

small.

Feglecting the squares and cross products of these small quantities,

the linearized free surface conditions in the inertial coordinates me

- - )
}72(55:?: %) = ¢t(’?;9; 2£: t) ©

‘E’[x 22X @'(f»i::z’%*)* Y22 7@-'(f,§,é,t)]+,=(f) '
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where F(t) is an undetermined functién of time. By Egs. (2) and (3)
—-/ ra __! i - - e . - e . .
¢§'=¢g;,¢%:=¢éh ¢E::¢§”Zf ”Zx: ;;:5zy,g%;:ﬁ%:)cg;—)3éy,;é 7;=§%€)C2;—>?%-

s0 that the free surface conditions become, in the moving coordinates:

9% = fr 6y B+ FK A EY 4A ) -
7'5 = ¢3 (x’y:é, 1ﬁ-) (8)

/L ~rR 1 R
The quantity %X +5 Y +/-"(f) in Eq. (7) can be set equal to zero, since
F(t) is an arbitrary function of time, and X and Y ere functions only of
time. This quantity does not affect the fluid motions since it introduces
no pressure gradients. Eliminating 7] between Eq. (7) and (8) the combined

condition
e (o Bt) 72 B Ly Bt) = 0 (9)

is obtained.

If it is assumed that the horizontally oscillating tank is equivalent
to a stationary tank with oscillating horizontal force field, the preceding

conclusions are reached intuiltively.

To summarize, the problem now reduces to determining ¢7(x,y,z,t) to

satisfy the following equations:
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[ Box G321 + Zﬁﬂ(x, 2¢) + B _Ey2t) =0

2 -¢n (at tank boundary) = normal velocity of tank boundary

. ¢t‘t (x;y)jg&‘:t) * ? % &,?,é,t) =0

In the following derivations, three of the five basic tank motions

are considered. They are: horizgontal motion parallel to the x-axis,
pitching motion about the y-axis, and yawing motion about the z-axis. Solu-
tions for horizontal motion parallel to the y-axis and pitching motion about
the x-axis can be obtained by interchanging a and b in the first'tx;ro types

of motion considered.

Sinusoidal motions are considered first. Arbitrary tank motions are
treated by use of Laplace transforms. In each case it is assumed that the
motion involves accelerations which are small in comparison to the accelera-
tion due to gravity and that the frequency of sinusoidal motion does not
have a value in the immediate neighborhood of the frequency of a natural
mode of free surface oscillation in a stationary tank. Motions in pitch
and yav are assumed to involve only small displacements while horizontal
motions may involve large displacements and velocities. This is consistent
with the linearized treatment of aircraft dynamic problems, Horizontal dis-
placements of several tank widths may occur during side slip or in the case
of a tank located far from the center of gravity of an aircraft undergoing

small yawing motions.

Sinusoidal Horizontal Motion Parallel to the x-Axis

If the horizontal motion of the tank is given by

X@)=Asnwt (10)




. (6. -

then the velocity potential ¢ (x,y,t) must satisfy

-8, (2%,2,4) = Awess vt (11)
@, (x,- ;{‘-)t) =0 (12)

The velocity potential which satisfies Laplace's equation and Eqs. (11) and

(12) is

g =-Awcos et {x ZZ\Anm[é—’c’z—W{]mé[—;g@’(zé")]

+ i B, infen)ZxjooshferZ (agéy} (13)

=0
The term proportional to x satisfies the velocity condition on the tank walls,
while the terms in the summations are needed to satisfy free surface conditions.

Applying the free surface condition to Eq. (13) gives the identity

Aw cos wt{x + ZIA @)2m'4[£"”'é]-ﬂZ”EW[?””E])%ZEHWEJ

+2 B, ( w‘m%[ém/)ﬁ -L‘_] génﬁ)ﬂw [Jenw)ﬁ‘-ﬁ_‘])
X 4 [Zem-/)T/ ] } =0

Expanding x in a Fourier series and then equating coefficients to zero in

(14)

the identity, one obtains

Ay =0 (15)

2

'Bn (-l) 4 a | w

72 (2 nrs)? {? @”ﬁ)ﬂw[(em/)ﬂﬁ]-w}w%[énﬂ)”a

(16)
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w?= ClJ?f =9 ﬁenf-l)a?—rW//émf)?T%] (17)

‘Bn becomes infinite if

Cl%t is the frequency of the nth odd harmonic of the fundamental mode of

free surface oscillation in a stationary tank. The velocity potential is

CUE

>< dmn gfﬂﬂ)a 3‘370%4 [.-Znﬂ) Z +—/L]
costfenmn k]
The elevation of the free surface above z = 8 is obteined with the aid of

2
Eq. (7)

) Za Ep*
? A Mw*é{X‘f'Z 77‘2(2)’71‘/)2(6(%[ a)

Xm /(E)HI)Z.W 1/} (19)

The horizontal force exerted by the fluid on the tank side walls is obtained

(18)

by integrating the difference in pressure at equal elevations on walls

h
2
- ﬁb{s@ (£,2,%)-4. (529} dz (20)

——

n a.é A
£, = Aaenwt {(0”—5/“"2 6; 77{:’?2”#)4— (w?jw?)} (21)

The total mcmcnt about the center of the tank is obtained from

fﬁ{¢ C£,2¢) +9(4 )}zafz+ 1@5{¢ (x——f)-f;/t}xdx
f(oé ¢ (+2,z 75) +; )}Zdz (22)




My = Aw’tinwe

36 w,, b [h_catumhlon)] R
X{o 52 27 Fets 2Bkl .4 ]@,?—aﬂ)}‘a”

Sinusoidal Pitching About The y-Axis

If the pitching motion of the tank is given by

O = Basnwt (24)

vhere B is the maximum angular displacement of a tenk wall from its mean

position, then the velocity potential must satisfy the boundary conditions:

-8y (2%,2,%) =+Bwz coscut (&5)

-@x A(x:"'é/‘t”’f) ==Bwx codcwt (26)

The velocity potential which satisfies these boundary conditions ie

Ysnllers) i foinh(ennz; el
¢ =5 cwesdwt Z( 77352n+/)3 M[zn*');r /? ]

, asn ons ) 2X Jeosh fone) 2 (z- )]
W[Z?n-f/)-g/lj

+ EA,,asa [—"zx]wé[z"ﬁ(zv«-f?]

# Z thoalz?hﬁ)a.‘x]%dﬁ[én*’) (Z"f‘ ]} (27)

n=0
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Applying the free surface condition, Eq. (9), the identity

X7 4h Mﬁénﬁ)g{]
.B a)c&dwt{wz 773@721"/)36644{.[5?72-/-/)2 a,]

it M[:?"*/)a x]
e Z,( TRen+)aenk [C-E‘m/)—/ﬂ

¢ ool (kP g F i)
XosalenrZ]

~ﬁ223;@%m%ﬁﬁgﬁﬁﬁéM%%wMﬁmﬂg%a
Y aim fern)Z% }_:: Z

(28)

is obtained.

Expansion of the first susmation in Eq. (28) in a Fourier series gives

Z. 2K aenh [ n#i) 5 Zx]

T2 codt 2 [Em: Rl
(29)
—/) 4a [/7, “’awé[nﬁ)r]],dm[énwﬂg
77‘ 263rz+/)‘?- @rn+) T

which upon Bubatituting into Eq. (28) and equating coefficients to zero

gives after simplification

Ay =0 (30)

A E@W[‘_"’n‘*’)z’_] _&

- )
“ vzémf)z@v*-w e e
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The velccity potential 1is

12 aom fene)f 2 Janbflens) Ex,
¢"-mewz'{2( ”"(?n+l)3/ mﬁ[genw) 77'£ F]
2A

. at en [&em/)—x]mé[(zm/) (5""‘)] ]
ik [en)Zh] (3)

o 5 h_catemhllen)BE]
+n§( U”T—ém,)z(a%:w [/.; = (enf./)ﬁ'n f‘%]

o inlerr et e B4
Coat[en+)TA] J

The elevation of the free surface 18 obtained by use of Egs. (7) and (29).

a_ |A_R W[Z?m Th
7= B7mwv{ D )zr’(;:,ﬂ)‘ aﬁ?nw)”’ e ]

a;f—w [;W)Z 1:7 } (33)

The horizontal force exerted by the fluid on the tank walls is obtained by

use of Eq. (20)

3
L= .Bw,dmwt{(' w"”f;'o(;,; 75)4

X 4 [ _2a lamhlent)z2/ M[zw)za&_] + )} (34)

62n+/) v

The total moment about the center of the tank is obtained from Eq. (22) vhere in
the second integral (g h) is replaced by g( /),-BI dinwt) to teke into account
the unequal depth due to rotation of the tank through the angle B dencot.
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My = Bed 2dimn w i—{ &oa’h /L o Lanh/l 3”+f)z‘é]
7*(9 n+))¥ 2 (n+1)7

n=

5 A b [w 3&Mﬁnﬂ)‘ﬁ‘]] 2

7)‘ "‘(an-l)" (Rn+1)7

Xeéj’a M{(;’ﬂﬁ);%] wi/@)w"- }

Rn+1)T

+pB Auhncx:tf;9gic?2f

Sinusoidal Yawing About The z-Axis

If the yawing motion ebout the z-axis is given by

V=Chimncwt

n é7 65%6
} rtRn+1) 4

4

(35)

(36)

where C is the maximum angular displacement of the tank walls from their

mean position, then the velocity potential must satisfy the boundary

conditions:
_¢x(_f%,y,z,t)=—Cwy coed wt

*5?5 (x,2£,2,¢) = Cwx cos cwt

?25 (557 ifj‘:égrtz) =0

(37)

(38)

(39)




M. = Bofde Goa’b /,, a,z'a/n/z[('zmz)!ab] ]
e Beddin e t{ ﬂ’*g nel)?[ 2 @n+mw  @E

8 Vo) [w 34 W/-anl)_}f]] Ea)u §pa’b

7)'*(2n+/) (2n+1)7r } mfen+)4
(35)
Th 2
X |4 R tarhlen+)za] L2
2 @n+)T WE[(OZ-a?
-+
B Al/nw T {;Og 72 }
Sinusoidal Yawing About The z-Axis
If the yawing motion sbout the z-axis is given by
V=Chdinewt (36)

vhere C is the maximum angular displacement of the tank walls from their
mean position, then the velocity potential must satisfy the bourdary

conditions:
—¢x(f%;y,z,t)=-Ccu}/Codwt (31)

—¢ (x,2£,2,t)= CwX cog cwt (38)

9, (x :’7,-73/-9:*) =0 (39)
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and the Laplace equation in three dimensions. The veloclty potential

satisfying these conditions is

@ n g [Beinlenifyleintleriz]
@ =Cwcoscwt 7;/-/)7],3(27%,)3[ Coshflznry) To

_ araim Jenn) FX Jeonk fenr) Z 4]
coah, [(2 n+/) _7%2]

. (10)
401 2 A i) Fosim e § 4]
=0 n= :

xmﬁmﬁmﬁw’%@]}

wvhere terms containing.even multiples of n or m have been omitted (since

they contribute nothing to the velocity potentiaml). The term involving

only the single sumation is the part of the velocity potential which satisfies
the velocity conditions on the tank boundaries, while the double summation
term 1s needed to satisfy free surface conditions.

Applying the free surface condition to Egq. (40), the following

identity 1s obtained:

2 m gpPainh leme) FX
T a)mgo\(/) ﬂ’3ﬁm+/)3m/z[(ém+/)%ﬂjmﬁmmf7]

A, 7 462.24%/{[?2”*’)71.7‘%] n (271.,.1)11:
) Wn&” 3@ n+)eoohfer) I fer 28]

(Equation continued on next page)
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+Z\ E Amn Ffwﬂ/‘ﬂ/ Tont) +a*Em+)*h ] Fab b'}(é Tont)*a (emﬂ)z

m=0 n=0
(k1)

X W A%‘be(gﬂ*/)‘e*a‘e(sz/)% j)m /énﬂ) ngm [53m+i}f§l]} =0

Upon substitution of the Fourier expansions

Mbﬁ[f:?mﬂ) ] _ 4ab (-/),Am[&nw) ] (k2)
(2m+/)603/2[ém+,ﬂﬂj] n=o [52(3 7n+/) +a2ém+,)z]

M"Alfznﬁ)a%] _ 4&52 —/),d,m[.'Zm-H)z-rg-] (43)

(erzﬁ)aodﬁzfenw)z 4 [b%2n +)2+a%zm+1)?]

into Eq. (41), the coefficilents /].m 5, are found after simplification to be

2
By - 1" /5a5/2'62n+f)—a‘i@m+f)W[ T [Fone fea e h) )
’ 77"’(é'm+/) (2n +1) [é (2n+i) +a (2m+[)]

where

C‘)m,n'-? 1/52((2 n+)+a é‘mﬂ)zw/‘; Vb4en+)*+azm +l)‘aly (45)
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The elevation of the free surface is found with the aid of Eqs. (7), (42)

and (43).

P O &)™ g a b b 12re ) Ao )R]
r-ecymad SNl

x@) =) ) i (sl o) 4

mw @
(46)

Since the motion is purely yawing, the fuel exerts no net horizontal force
or mament about the x or y-axis. The moment about the z-axis or yawing
moment exerted by the fuel on the tank is obtained from the following

expression

h ]
Mg =~ //‘L’ {fé [5’% (%’?’Zit)’ffi(‘%%z:@]’zd}

f[ggf(x’,a y Zyt)- ( 2,2”:’ t)]rdx}dz 47)

Substituting Amn into Eq. (40) and applying Eq. (47) the yawing mcment

)

is found to be

. . b
M, = Cadnwt 37,%@’—/‘_—’1_20(2—,,—;)—%;4@%[@@2&]

Z

+A‘M[?ﬂ"/) Z/ /2roaﬁ/z(a +/52)

ii%n 64,oa.3 53[5 (2n+/) x(ZmH)] ) (48)
+m=a 5o 7 7)'% (en+1) ¥ ﬁem+ﬂj(em+/)(3n+/) %n
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The first summation of the right side of Eq. (48) is the effective mament

of inertia of the fuel about the z-axis.

Arbitrary Horizontal Tank Motion

The Laplace transform (with respect to time) of the boundary conditions

for arbitrary horizontal tank motion is
£{g (%24} - L (X@) (49)
£{¢Z (x;_z/l‘;'é)} =0 (50)

where :ﬁ:(f) is the displacement of the tank in inertial coordinates. Under
the assumption that up until the time t = o the free surface is undisturbed,

the Laplace transform of the free surface condition is

7@%2"{;?5 (x,;é,f)} = gi{ b, (, %,f)} =0 (51)

The Laplace transform which satisfies the conditions given by Eg. (49), (50)

and (51) is

& { ¢} = ~X{X )}

X E( ) M[?nﬁ)g{fwdﬁﬁmﬂg Z+3 )7(52)
77‘2/2n+i)2(7b2 Oedﬁ/énwgﬁ]

The Laplace transform of the elevation of the free surface above z = % is

given by

£ {nlxe)} = 4-pLfp00 54 &




S

L {’?} = - }é &L {X(f)}[ X ;‘Z:(-!)r;r%z ,)"-(76 *a)),dm/&enﬁ)l' _Z]

(54)

The Laplace transform of the horizontal force exerted by the fluid on the

tank walls is given by

: A
"\e{f’[t)} =rbP f ;—[f {¢(23‘i:2;f2}‘f{¢(‘§»z,é2}]dz (55)

X{r)= - patpuelrth 3, fet )

The Laplace transform of the total moment exerted by the fluid on the tank is

i} =pbp f [of{ﬁi’(z"z p X gitlfeaz
+,ab;bﬁ’{¢( 50} xdx
Lim} -—;@C’{J’C (t)_} * )
X[t 3 g Aepll-=le ) )|

The Laplace transforms of velocity potential, free surface elevation,

horizontal force and total moment representing the response of the fuel
to arbitrary pltching and yawing motions of small amplitude are given below

without proof.
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Arbitrary Pitching Motion

% (}071‘¢

cf{¢} =7f{é(t¥ nZ‘

a2sin [err) % Jeoshfer)Z(Z -

r3zn+))?

fzazdl'/ﬂ&n +) %Z]Am/z [énﬂ) %x]

Godfa[ﬂanﬂ)_g”%_

s

)45{,

$2
T%on+)? | P~ +a))

Link [éanﬂ);—_rﬂ

X ( h_2a torhlent)F a] Z Mﬁmﬂz{]%/l[fnﬂ)z(f*z)y
2

(@n+1) T

b ¢ {7} Lo}

2a.lanhlen+) %]

"DF) T Coukfenr) R

X 2( 77’(2;::)2 é/b_
2l
S

L{mef-pL{6 (‘5)}/ ¥

oy é’P a’b

@n+)Tr
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where O (t) is the angular displacement of the tank walls in pitch.

Arbitrary Yawing Motion
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vhere 3 m,n 1is given by Eq. (44) and ;ﬂ(t) is the angular displacement

of the tank walls ln yaw.




EQUIVALENT MECHANICAL SYSTEM

Consider a rectangular tank of length a, width b, and mean fuel
depth h undergoing small amplitude sinusoidal oscillations of frequency cv
about a set of fixed axes. Let the fixed axes coincide with the principal
axes of the fuel when the tank is at rest in an upright position. The
positive directions of these axes are shown in Fig. 1. Positive forces,
moments, displacements, and rotations are defined according to the con-

ventions of a right hand system.

The problem of replacing the fuel by an equivalent mechanical system
resolves 1itself into finding a mechanlcal system for each of three types
of motlon:

(A) horizontal motion parallel to the x-axis and pitching about the
y-axis.

(B) horizontal motion parallel to the y-axis and pitching about the
x-axis. | |

(C) yawing motion about the z-axis.

In order for a mechanical system to be equivalent to the fuel with respect
to one of the above types of tank motion, it must exert the same force and
total moment on the tank as the fuel does for that type of tank motion.
Motions of type (A) and (B) are of the same character so that it is only

necessary to discuss one of them.

Motions of Type (A)

Consider a mechanical system composed of a fixed mess M and an infinite

set of undamped spring-masses {-7Z3i} 8o constrained as to move only parallel

to the bottom of the tank and the xz-plane. Let the nth spring-mass have a
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spring constant é” such that

2
by = @, M,
vhere (U, is the frequency of an odd harmonic of fundemental free fuel
oscillation. Locate the nth spring mass at a vertical distance 2z, and
the fixed mass at a vertical distance Z as shown in Fig. 2. The moving
magses may be thought of as point masses while the fixed mass has a distri-
bution such that its moment of inertia about an axis parallel to the y-axis

and passing through z = 2 is Jy_ .

If the tank undergoes a horizontal oscillation of amplitude A and
frequency () parallel to the x-axis, then the equations of motion of the

moving masses are given by

My Xy = = hon (Xyr Aténicot) - (66)

where . n is the displacement of the moving masses parallel to the x-axis.
If the tank undergoes a pitching oscillation of angular amplitude B and

frequency Cv , the equations of motion are

‘mnxnz—kn (y, =B Zy Aon cw?) +7I7,,?.B,4(/n wt  (67)
The horizontal force and total moment exerted by the mechanical

gystem were obtained with the aid of the solutions of Eqs. (66) and (67).

A comparison of these forces and moments (designated by primes) with the

corresponding forces and moments exerted by the fuel on the tank is shown
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below. The forces and moaments have been reduced to non-dimensional form

in which
MF = p abh = total fuel mass '
Wp = g @ abh = total fuel weight
g = vertical acceleration
I‘F = effective moment of inertia about the y-axis of the fuel

Y

r, = % = tank aspect ratio

1 #

f: = A‘;-J:.: (n+1) ﬂ’/&,Mﬁg n-}-/)??‘)zl‘]
2 hw?
F=7%

Sinusoidal horizontal motion:
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Sinusoidal pitching motion:

£ 2 3 / o Lamh[Cr+1)Tin]

(72)
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If the forces and moments exerted by the mechanicel system are to be

identically equal to the forces and moments exerted by the fuel, then the

characteristics of the mechanical system must be given by

o lamblens) ]

Mg~ m3en+1)3/u (76)

/
ko 2 (2n+) Ty
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Moy _i‘/‘ slank [ernr)li, ]
Me ~ 7r3(2n+)3/y, - (78)

= i 77271, o (79)
/L &4 )moMF A
I Y _ IF@ M z 2 (80)
Meh2 ~ Mep2  Mr
b bon _ 8 tank[ens)h,] (61)
W Y/kad (2h+l)‘2

It 18 interesting to note that the rigid mechanical system has the
same moment of inertia about the y-axis as the fuel if the free surface were
constrained by a tank boundary. This effective moment of inertia of the

fuel is found to be

Cn+ )E/Q
I Fy = I.J'/y { . /+;“&T }t,(lzzg) rs Zﬂ:%{;ﬁ:}i ]} (82)

vhere .Z;g,} is the moment of inertia about the y-axis if the fuel were

solidified.
Approximate expressions, good to five significant figures, for

J/-',?, / z ..5'7, M /MF, and Z/ﬁ vhich lend themselves to easy calculation

are given below.
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for /'Z/, é/

M _ 0258012 [tank Dh,+ 0.05/800

Y7 > [ ' ] (84)
tor A L

M.

vt 1.0320492, [lanh - }Ll+aaﬂaaa] -
for /L,Z._?i

Z

E/' M _ 0/64256/6:%}2 _ ](86)
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The mass ratios ?no/M/.- , 7?;,//!4,_- , and M//V/,r have been computed
from Egqs. (76), (84) and (85) and are plotted as a function of r1 in Fig. 3.
The moving masses associated with the higher harmonics are too ammll to plot
except very near 1 = 0.. The ratio of 772, to 77, is approximat.ely
1/(2n+1)2 for emall ry and 1/(2n+1)3 for large r;. These ratios are plotted
on a logarithmic scale verses the ratiof//" in Fig. k.

The ratios of the arms Z, , &, 5 and to‘A have been computed from
Egs. (77) and (86) and are plotted in Fig. 5. As the tank becomes shallow,
the ratio %Z— becomes infinite, but il approaches 0.460613a as can be seen

by multiplying Eq. (86) by ar; and letting ry eapproach zero.
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The moment of inertia ratios JCC?;/(Z%%Land g‘/(JZ%F have been
calculated from Eqs. (80) and (83) and are plotted in Fig. 6. It should
be noted that values of .[ F’} / I ‘9,} for r; >1 can be cbtained by replacing
r; by 1/r; in Eq. (83).

Fig. 7 is a plot of the non-dimensional form of the spring constants
/160,,&/ , and AGE as calculated from Eq. (81).

In order to get a dimensionless parameter, the horizontal force pro-
duced by the mechanical system is divided by the force which would be produced
if the fuel vere solidified. Fig. 8 is ﬁ plot of this ratio es a function of
frequency for a tank aspect ratio of 0.25. At resonant frequencies the force
ratio would not acturlly become infinite. In Ref. 3c, Lamb discusses a 1imit-
ing velue of the ratio of wave amplitude to wave length which permits compliance
wvith free surface boundary conditions. This limiting ratio was found to be
dpproximately 0.132 beyond which one may assume that energy dissipation through
splashing would occur. Corresponding to any amplitude limitation of any
particular mode of fuel oscillation there is a force limitation in that mode.

At resonant frequencies for the tank harmonics the maximum force
that can be produced in the nth odd harmonic mode is 1/(2n+1)2 times the
maximm force that can be produced in the fundamental mode (n=o0). This

gives some justification for discarding the moving masses associated with

modes of fuel oscillation beyond the fundamental.




Motions of Type (C)

Consider a mechanical system composed of a fixed mass with moment of

inertia _Z-z about the z-axis and an infinite set of moving masses constrained

to pivot about the z-axis. If the moving messes have moments of inertia Im'n
»
and are attached to torsional springs with spring constants /ém n, then
3

the equations of motion of the moving masses are

Imn’}!‘é)'nh = —/é (’W;CMW'&') 5 (87)

vhere C.d¢rt cu T is the angular displacement of the tank in yaw. If the
spring constants are related to the natural frequencies of free fuel oscil-

lation by

’é‘m,n = w?n,n Im,n (88)

then the yawing moment exerted by the mechanical system on the tank can be
found from EQ. (87) and compared to the yewing moment exerted by the fuel.
This comparison is made below in which the primed moment is the moment pro-

duced by the mechanical system and where

ISZ = moment of inertia about the z-axis of the solidified fuel
-[F = effective moment of inertia of the fuel
=z

/b/ = 7{—’ = tank aspect ratio in the xz-plane
/&2 = Zé = tank aspect ratio in the yz-plane
b2
7

nzal = tank aspect ratio in the xy-plane

ﬁ%& i ”/‘6’%3?@ m)+ @) lamh [”/Z/WE; Gem)*+ln +/)ej
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If the two yawing maments are to be identical for all forcing

-frequencies, then

I 768 13 J?mf-l) 2ona)il” M@:%Z’m;ﬁ(?mf]
_'I',gz " TG )ﬂzﬁemﬂ)iém/ emi ertl® Wy NiZlerne, +(2n+/)”'

% oo
Iz, Zea 5§ Zmn (s2)
'Z:S'z ISZ m=0 n=0 Igz
It is interesting to note that if ry = (2n+1)/(2m+1), then Im,h =0.
In the case of a tank with square planform (r3 = 1), the fuel assoclated with
the frequency a’a,o oscillates symmetrically about the planes x = %y so that
no net force or moment can be produced. As far as the fuel assoclated with
the natural frequency a’m,n is concerned, the planes x = ¥(2q+l) a/2(2n+1),
and y = *(2q+1) b/2(2m+1) where q is an integer could be taken as tank
boundaries. Thus the tank could be divided into (2m+l) times (2n+l) smaller
sub-tanks, If ry = (2n+1)/(2m+1), the smaller sub-tanks are square so that

no net forces or moments are produced and _Z, mn=0 -
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It is probably sufficiently accurate to consider only the moment
produced by the moving masses with moments of inertia .[ 0,0, .Z,_',o , ] 0,/ .[ 2,0,
and /. 0,2 * The ratios of these moment of imertia to 7 S have been
computed from Eq. (91) as a function of r3 for the shallow tank case, T)=r,=0.

They are shown in Figs. 9 and 10. To obtain the value of ]777 n / ]:S"z for
J

ry; # 0, one simply multiplies '[777 72/],5'2 for r; = 0 by
?

Zanh /}f/},W?(Zm+l)gl-{2n+l)f7/”/b;\/4;(?m+l)€l-(z n+1)57

To obtain values for r3 > 1, replace r3 by 7‘/— and change /i, to /Lz .
3

The ratio Z g /7 . was calculated from Eq. (83).
Fa/+5z

Mechanical Systems for Combinations of Tank Motions

A single mechanical system, that will respond the same as the fluid
to all tank motions, cannot in general be constructed from the simple
mechanical systems discussed without introdueing negative moments of inertia.
However, it is always possible to construct a single mechanical system that
will represent the fluid response to both yawing motion and motion of type (A)
or yawing motion and motion of type (B). For, consider the mechanical system
that represents motions of type (A). The fixed mass can be distributed in the
yz-plane so that the center of gravity remains fixed and its moment of inertia
is Z, sbout the z-axis and J. %4 about, an axis passing through Z = Z end
parallel to the y-axis. The moment of inertia -Z;'z can be separated into
the components .[2, I 0, O,I 0,/ etc. of the mechanical system representing

the response of the fluid to yawing motion.
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DISCUSSION

Some problems arise concerning the proper use of the preceding
material, and a few of these are discussed below. Also included are some

topics which contribute only to the general description of fluid oscillations.

Mechanical Systems

For aircraft having a vertical plane of symmetry through the longi-
tudinal a:iis , the longitudinal atability and the lateral-directional stability
t,;an be treated independently.

In order to handle the longitudinal stability it is necessary to kmow
the forces and moments produced by translation of the tank and by pitching
motions. A single mechanical system has been set up to represent the tank
for both of these motions.

The lateral-directional case is more complicated since in general
the effects of rolling motion, translation a.nd yawing must be considered.

A single'mechanical system has been devised to represent the fuel tank for
all of these motions, provided the translation is confined to the plane of
the rolling motion. The more general case invblving also longitudinal
translation, (which would al.wpear with wing tip tanks), camnot in general
be represented by a single system of the present type, unless imaginary
dimensions are introduced. In such a case different systems could be used
to obtain forces and moments in different planes.

It is aleo possible to use the Laplace transforms of the forces and
moments directly, without regard to mechanical systems, if the transform

method is being used for the complete problem.
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In some cases, particularly where tanks are located far from the C.G.
of the airplane, the effect of angular motions of the tank may be negligible
by comparison with the effect of translation of the tank. In such cases

some simplifications may be possible.

Approxmte Mechanical Systems

The forces and momsnts produced by the higher harmonics of the fluid
.motion vill be negligible in many cases. This means that the equivalent
mechanical system can frequently be assumed to consist of one fixed mass
and one moving mass,.

If the airplarme has a natural frequéncy quite close to a higher harmonic
of the fluid motion, it might be assumed that it would be necessary to retain
the ncving mags corresponding to this harmonic. However, consideration of the
practical limitations on vave heights may alter the picture. These limi-
tations may arise from the effects of viscosity, cavitation, or through the
presence of non-linearities in free surface boundary conditions. For example,
in Ref, 3c a limitation on the ratio of vave height to wave length 1s suggested.
Such a "limit" might mark the introduction of splashing with comsequent energy

dissipation.

Tanks ¢f Different Shape
Tanks of other than rectengular shape could be studied. Stewart and
Lorcllh have studied the forced oscillations in a cylindrical tank of circular

cross-section with free surface normal to the axis, Some information on the
free oscillations in a fev other tanks of simple shape is given in the

appendix to Ref. 6. Very few cases involving variable tank depth have been
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solved exactly. Although there are mathematical difficulties in getting
exact solutions to many cases which appear physically simple, it is still
possible to get approximate theoretical solutions in such cases. Also,

it should be comparatively easy to determine experimentally the fundamental

frequency for a tank of arbitrary shape.

Baffle Locations .

For the fundamental mode in the rectangular tank the highest vertical
velocities of the fluid occur at the ends of the tank in the free surface.
The highest horizontal velocities occur in the free surface at the center
of the tank. These results are easily verified from the expression for
velocity potential.

It seems probable that the above locations are best for baffles since
high local velocities are reguired for a high rate of energy dissipation.
The practical problem is not as simple as this would suggest however, since
it may be necessary for the baffles to be effective over some range of fuel

heights in the tank.

Effective Value of g

If the fuel tank experiences a large constant acceleration normal to
the mean free surface, then the value of g is effectively changed. If the
effective value of g is quadrupled, then the natural frequencies of fluid

oscillation are doubled. If the effective value of g approaches zero, a8

in & free fall, then the natural fregquenciles approach zero. OSuch effects

would probably be of interest in connection with missile dynamics, and might

be of importance in aircraft maneuvers.
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To get the correct equivalent mechanical systems and force and moment
expressions it is only necessary to replace g by the effective value of g in
the formulas. (This results in the introduction of an effective fuel weight

&leo.)

Variable Normal Accelerations

It has been mentioned that a constant acceleration normal to the mean
free surface changes the effective value of g and alters the natural frequencies
of the fluid in the tank. It can also be shown that variable normal accelera-
tions may alter the amplitude of the wave motion. In particular a periodic
normal acceleration of the correct frequency may feed energy into an existing
wave motion. This occurs through a non-linear coupling, and the equivelent
mechanical system does not correctly represent the fluid to this order. Such

terms are not ordinarily considered in airplane dynamics.

Non-Linenrities

When the amplitude of the fuel motion is large the effect of non-
linearity may become important., The non-linearity is associated with boundary
conditions at the free surface, not with the Laplace equation, which is linear.
The mathematical difficulties introduced by the non-linear effects are too
great to permit investigation here. The region of applicability of the

linearized equations can best be determined by experiment.

Viscosity
The effects of viscosity are small for unbaffled tenks of the size

considered in aircraft. If baffles were present this would certainly not

be the case, since the actual flow pattern can be radically different from
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the potential flow pattern in such cases, and heavy damping may be introduced.
For this reason it is of little interest to investigate the potential flow
pettern where baffles are involved. The scope of the report is therefore
limited primarily to determining whether or not baffles may be necessary.

It is then possible to suggest locations where baffles might be found most
effective. This is based entirely on the velocity distribution in the un-
baffled tank, it being assumed thet the greatest energy dissipation would

be produced by locating baffles in the regions of highest velocity.

Free Surface Shapes

It is of some interest that, in the free oscillations of fluld in a
tank, an arbitrary shape of the free surface does not in general recur
periodically. For example, in a stationary rectangular tank if the free
surface is initially an inclined plane, it will never assume this shape
again. This is for a non-viscous fluid, which would coétinue its oscillations
indefinitely without loss of energy. A sinusoidal free surface whose wave
length is 2/n times the tank length (where n is an integer) will repeat
periodically. However, each different wave length repeats in a different
period of time and these periods are not in general related to each other
through rational numbers. This of course explains the non-repetition of
the plane free surface since it is initially composed of these sinusoidal
elements (by Fourier analysis), and after the first instant they never

have simultaneously the correct relative magnitudes required to represent

a plane.

Superposition Processes

Knowledge of the steady state response of the fuel to all frequencies
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of- oscillation of the tank makes it possible to determine the response to
an arbitrary forcing function. The complete solution of the differential
equations of motion is the sum of the complementary function and the
particular integral. The caomplementary function corresponds to the free
.oacillations of the fluld in a stationary tank, and the desired initial
conditions can theoretically be imposed by proper choice of the infinitely
many arbitrary constants associated with the fundamental and harmonics. The
particular integral for an arbitrary forcing function could be obtained by
superposition of solutions for different forcing frequencies through a
Fourier Integral approach, for example. In practice the Laplace transform

methods seem preferable.
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CONCLUSIONS

In meny cases it is practicable to replace the fuel by spring-
mass systems for purposes of dynamic analysis. These spring-mass
systems correctly represent the fuel even for angular motions of
the tank. When many types of tank motion must be simultaneously
considered these equivalent systems may become complicated, and pos-
sibly lose physical significance through the neceseity for negative
moments of inertia.

It seems probable that masses corresponding to higher harmonics
of the fuel motion may often be neglected (or considered as fixed
mass). This type of approximation is, of course, very important
in simplifying calculations, and deserves further study.

When equivalent mechanical systems are introduced, any desired
mcthod'may be used for solving the complete dynamics problem. Lapl#ce
transform methods may be used in conjunction with the mechanical systems
or without reference to them. 1In either case terms corresponding to

higher harmonics can probably be cmitted.
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FIGURE 3
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FIGURE 6
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FIGURE 7
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FIGURE [0
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